Posts

Showing posts from January, 2022
Image
  Koordinat Kutub Dan Koordinat Kartesius Nama: Gagah Suryanatha.AS Absen: 14 Kelas: X MIPA 3 Pengertian dan Manfaat Koordinat Cartesius Koordinat cartesius merupakan suatu titik yang digambar pada sumbu X dan sumbu Y yang biasanya ditulis dengan P(x,y). Istilah cartesius sendiri ditemukan oleh ahli matematika dari Perancis yang bernama Rene Descartes. Hasil penemuannya inilah gabungan antara aljabar dan geometri yang kemudian berkembang menjadi ilmu geometri analitik, kalkulus, dan kartografi. Sistem koordinat cartesius juga bisa digunakan pada dimensi lebih tinggi, misalnya 3 dimensi yang menggunakan sumbu x, y, dan z. Jika pada 2 dimensi digunakan sumbu x dan y, maka sumbu z terletak saling tegak lurus dengan sumbu x dan y. Manfaat dari koordinat cartesius sendiri banyak digunakan untuk kehidupan sehari-hari. Biasanya koordinat cartesius digunakan pada gambar denah atau peta, sehingga dapat memudahkan dalam mencari sebuah daerah. Selain itu koordinat cartesius juga digunakan dal...
Image
  IDENTITAS TRIGONOMETRI Nama: Gagah Suryanatha.AS Absen: 14 Kelas: X MIPA 3 PENGERTIAN Identitas trigonometri adalah suatu relasi atau kalimat terbuka yang memuat fungsi-fungsi trigonometri dan yang bernilai benar untuk setiap penggantian variabel dengan konstanta anggota domain fungsinya. Domainnya sering tidak dinyatakan secara eksplisit. Jika demikian maka umumnya yang dimaksud adalah himpunan bilangan real. Namun dalam trigonometri identitas yang memuat fungsi tangens, kotangens, sekans dan kosekans domain himpunan bilangan real ini sering menimbulkan masalah ketakhinggaan. Karena itu maka dalam hal tersebut, meskipun tidak dinyatakan secara eksplisit, maka syarat terjadinya fungsi tersebut merupakan starat yang perlu diperhitungkan. Rumus Identitas Trigonometri Kebenaran suatu relasi atau suatu kalimat terbuka sebagai suatu identitas perlu diverifikasi atau dibuktikan berdasar aturan atau rumus dasar yang mendahuluinya. MEMBUKTIKAN KEBENARAN IDENTITAS Ada tiga pilihan pembukt...

SUDUT - SUDUT BERELASI PADA KUADRAN I, II, III, IV

  SUDUT - SUDUT BERELASI PADA KUADRAN   I, II, III, IV Nama: Gagah Suryanatha.AS Absen: 14 Kelas: X MIPA 3 Sudut Berelasi merupakan lanjutan dari ilmu trigonometri tentang kesebangunan pada segitiga siku-siku untuk sudut kuadran I atau sudut lancip (0 − 90°). Mari kita simak penjelasannya berikut. Rumus Sudut Berelasi Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif. Sudut Berelasi di Kuadran I Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° − α) = cos α cos (90° − α) = sin α tan (90° − α) = cot α Sudut Berelasi di Kuadran II Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° + α) = cos α cos (90° + α) = -sin α tan (90° + α) = -cot ...

SUDUT - SUDUT BERELASI

Image
  SUDUT - SUDUT BERELASI Nama: Gagah Suryanatha.AS Absen: 14 Kelas: X MIPA 3 Sudut Berelasi Adalah perluasan definisi dasar ilmu trigonometri tentang kesebangunan pada segitiga siku-siku yang memenuhi untuk sudut kuadran I atau sudut lancip (0 − 90°).   Rumus Sudut Berelasi Dengan memakai sudut-sudut relasi, kita mampu menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, bahkan untuk sudut yang lebih dari 360°, termasuk juga sudut negatif.   - Sudut Relasi Kuadran I Untuk α lancip, maka (90° − α°) menghasilkan sudut-sudut kuadran I. Di dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut : sin (90° − α ° ) = cos α ° cosec (90° − α ° ) = sec α ° cos (90° − α ° ) = sin α ° sec (90° − α ° ) = cosec α ° tan (90° − α ° ) = cot α ° cot (90° − α ° ) = tan α °   - Sudut Relasi Kuadran II Untuk α lancip, maka (90° + α°) dan (180° − α°) menghasilkan sudut-sudut kuadran II dalam trigonometri, relasi sudut-sudut dinyatakan sebagai beriku...

SOAL KONTEKSTUAL BERKAITAN PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU, SUDUT ELEVASI DAN SUDUT DEPRESI

Image
  SOAL KONTEKSTUAL BERKAITAN PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU, SUDUT ELEVASI DAN SUDUT DEPRESI Nama: Gagah Suryanatha.AS Absen: 14 Kelas: X MIPA 3 Masalah Kontekstual mengenai Sudut Elevasi dan Sudut Depresi Sebuah pohon berjarak 130 meter dari seorang pengamat dengan tinggi mata pengamat dari tanah adalah 168 cm. Apabila sudut elevasi yang terbentuk adalah 60° dari mata pengamat ke pucuk pohon, maka tinggi pohon tercebut adalah …. Jawab: Agar mudah dalam menyelesaikan masalah di atas, kita harus mampu mentransformasi setiap kalimat dari perrnyataan di atas dalam sebuah gambaran.   Dik: Jarak pengamat ke pohon: 130 meter Tinggi pengamat: 168 cm = 1,68 meter Sudut Elevasi 60° Dit: Tinggi pohon. Penyelesaian: Pertama.  Buatlah ilustrasinya Kedua.  Buatlah pemisalan agar memudahkan kita dalam mencari perbandingannya Misalkan: Tinggi pohon – tinggi pengamat       =  t Jarak pengamat ke pohon      ...