FUNGSI : KUADRAT , RASIONAL  , IRASIONAL


Nama: Gagah Suryanatha Athallah Saputra

Kelas: X MIPA 3

Absen: 14


FUNGSI KUADRAT

Fungsi kuadrat atau yang dikenal juga sebagai fungsi polinom adalah fungsi dengan pangkat peubah tertingginya adalah 2. Pada umumnya, bentuk umum dari fungsi kuadrat adalah f(x)=ax2+bx+c atau y=ax2+bx+c.Suatu fungsi selalu berkaitan dengan grafik fungsi. Begitu juga dengan yang ada pada fungsi kuadrat.Grafik fungsi kuadrat memiliki bentuk seperti parabola. Untuk menggambar grafik fungsi kuadrat harus ditentukan titik potong dengan sumbu koordinat dan juga titik ekstrim.

Titik Potong dengan Sumbu Koordinat

Titik potong dengan sumbu X didapatkan dengan cara menentukan nilai peubah x pada fungsi kuadrat. Apabila nilai peubah y sama dengan nol, sehingga akan didapatkan titik potong (x1,0) dan (x2,0). Yang mana x1 dan x2 adalah akar-akar persamaan kuadrat. Apabila diskriminannya sama dengan nol maka akan didapatkan hanya satu akar dan ini berarti hanya ada satu titik potong dengan sumbu X. Jika nilai diskriminannya kurang dari nol persamaan kuadrat tersebut tidak mempunyai akar real yang berarti tidak mempunyai titik potong dengan sumbu X. Titik potong dengan sumbu Y didapatkan dengan cara mencari nilai y pada fungsi kuadrat apabila nilai peubah x sama dengan nol, sehingga akan didapatkan titik (0,y1).

Titik Ekstrim

Titik ekstrim pada fungsi kuadrat adalah sebuah koordinat dengan absisnya merupakan nilai sumbu simetri serta ordinatnya adalah nilai ekstrim.

Pasangan koordinat titik ekstrim pada fungsi kuadrat y=ax2+bx+c yaitu seperti berikut ini.

y=ax2+bx+c

D merupakan diskriminan

D=b2-4ac

titik ekstrim fungsi kuadrat 1merupakan sumbu simetri dan titik ekstrim fungsi kuadrat 2adalah nilai ekstrim dari fungsi kuadrat.

Pembuktian Rumus Titik Ekstrim Fungsi Kuadrat

Titik ekstrim dapat kita peroleh dari konsep turunan pertama.

Titik ekstrim fungsi kuadrat y=ax2 + bx + c didapatkan dengan cara menurunkannya terlebih dahulu, lalu hasil turunannya sama dengan nol, y’ = 0, sehingga akan didapatkan bentuk seperti di bawah ini:

y=ax2 + bx + c


Contoh soal:

Fungsi kuadrat dari f(x)=x2-6x+8

Titik potong dengan sumbu X 

Titik potong dengan sumbu X akan didapatkan apabila nilai y=0, maka dari itu akan didapatkan bentuk persamaan kuadrat x2-6x+8=0.

Untuk memastikan bahwa persamaan kuadrat di atas mempunyai akar, maka langkah pertama adalah menentukan terlebih dahulu diskriminannya.

D=b2-4ac=(-6)2-4(1)(8)=36-32=4

Sebab diskriminannya 4 (positif) pastilah persamaan kuadratnya mempunyai dua akar real berbeda.

Hal itu berarti, fungsi kuadrat di atas mempunyai dua titik potong dengan sumbu X. Titik potong dengan sumbu X didapatkan dari akar-akar persamaan kuadrat.

x2-6x+8=0
(x-2)(x-4)=0
x=2 atau x=4

Sehingga, titik potong dengan sumbu X yaitu (2,0) dan (4,0)

Titik Potong dengan Sumbu Y 

Titik potong dengan sumbu Y akan didapatkan apabila nilai x=0.
y=x2-6x+8

y=02-6(0)+8=8

Sehinga, titik potong dengan sumbu Y yaitu (0,8)


FUNGSI RASIONAL

Fungsi rasional merupakan fungsi yang mempunyai bentuk umum


Dengan p dan d adalah polinomial dan d(x) ≠ 0. Domain dari V(x) merupakan seluruh bilangan real, kecuali pembuat nol dari d.

Adapun fungsi rasional yang paling sederhana, yakni fungsi y = 1/x dan fungsi y = 1/x².

Di mana keduanya mempunyai pembilang konstanta sertaa penyebut polinomial dengan satu suku. Dan kedua fungsi tersebut mempunyai domain semua bilangan real kecuali x ≠ 0.

Fungsi y = 1/x

Fungsi ini disebut juga sebagai fungsi kebalikan sebab setiap kita mengambil sembarang x (kecuali nol) maka akan menghasilkan kebalikannya sebagai nilai dari fungsi tersebut.

Yang artinya x yang besar akan menghasilkan nilai fungsi yang kecil, begitu juga sebaliknya.

Contoh 1

Mendeskripsikan Sifat dari Ujung Grafik Fungsi Rasional

Untuk y = 1/x dalam kuadran III

  1. Mendeskripsikan sifat dari ujung grafik fungsi tersebut.
  2. Mendeskripsikan apa yang akan terjadi pada saat x mendekati nol.

Serupa dengan sifat grafiknya pada kuadran I, maka akan kita peroleh

  1. Pada saat x mendekati negatif tak hingga, nilai y akan mendekati nol. Jika disimbolkan akan menjadi: x → –∞, y → 0.
  2. Pada saat x mendekati nol dari kiri, nilai y akan mendekati negatif tak hingga. Pernyataan tersebut juga bisa kita tuliskan dengan simbol x → 0y → –∞.

Fungsi y = 1/x²

Dari pembahasan di atas, kita bisa mengetahui bahwa grafik dari fungsi ini akan mengalami jeda pada saat x = 0.

Namun demikian, sebab kuadrat dari sembarang bilangan negatif merupakan bilangan positif, cabang-cabang dari grafik fungsi ini akan terletak kdi atas sumbu-x.

fungsi y = 1/x² adalah fungsi genap.Sama halnya dengan y = 1/x, nilai x yang mendekati positif tak hingga akan menghasilkan y yang mendekati nol. Jika kita tulis simbolnya maka akan menjadi: x → ∞, y → 0.

Hal ini adalah salah satu indikasi dari sifat asimtot dalam arah horizontal. Serta kita akan menyatakan y = 0 adalah asimtot horizontal dari fungsi y = 1/x dan y = 1/x². Secara umum,

Asimtot Horizontal

Diberikan sebuah konstanta k, garis y = k adalah asimtot horizontal dari fungsi V(x) apabila x bertambah tanpa batas, akan menimbulkan V(x) mendekati k: x → –∞, V(x) → k atau x → ∞, V(x) → k.

Asimtot Vertikal

Diberikan sebuah konstanta h, garis x = h adalah asimtot vertikal untuk fungsi V apabila x mendekati h, V(x) akan bertambah atau berkurang tanpa batas: pada saat x → h+, V(x) → ±∞ atau pada saat x → h–, V(x) → ±∞.

Mengidentifikasi dari asimtot horizontal dan vertikal sangatlah bermanfaat.

Sebab grafik y = 1/x dan y = 1/x² bisa ditransformasi dengan menggesernya ke arah vertikal maupun gorizontal. Fungsi,

asimtot horizontal

adalah bentuk pergeseran dari fungsi y = 1/x. Sementara untuk fungsi,

asimtot vertikal

adalah bentuk pergeseran dari fungsi y = 1/x²


FUNGSI IRASIONAL

Fungsi irrasional adalah fungsi yang memetakan himpunan bilangan real tak negatif kepada himpunan itu sendiri. Sehingga fungsi irrasional memiliki syarat bahwa fungsi akan terdefinisi apabila nilai di dalam akar tersebut tidak negatif.

Contoh

Suatu fungsi irrasional ditentukan oleh rumus begin mathsize 14px style f left parenthesis x right parenthesis equals square root of fraction numerator x minus 2 over denominator x plus 2 end fraction end root end style. Fungsi tersebut akan terdefinisi jika

Pada fungsi tersebut terlihat bahwa fungsi tersebut irrasional yang di dalam akar memiliki bentuk pecahan biasa, sehingga dalam pecahan biasa memiliki syarat penyebut tidak boleh bernilai begin mathsize 14px style 0 end style.

Dengan demikian, agar fungsi begin mathsize 14px style f left parenthesis x right parenthesis equals square root of fraction numerator x minus 2 over denominator x plus 2 end fraction end root end style terdefinisi, maka nilai begin mathsize 14px style x end style haruslah  begin mathsize 14px style x less than negative 2 space atau space x greater or equal than 2 end style.

Comments